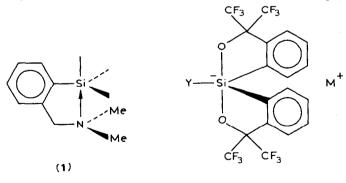
Preliminary communication

A RIGID PENTACOORDINATE SILICON STRUCTURE GENERALIZATION OF PSEUDOROTATION

ROBERT J.P. CORRIU, MUHAMMAD MAZHAR, MONIQUE POIRIER and GERARD ROYO

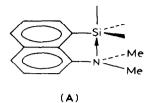

Institut de Chimie fine, Hétérochimie et amino-acides, UA 1097, Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon, 34060 Montpellier Cedex (France)

(Received January 17th, 1986)

Summary

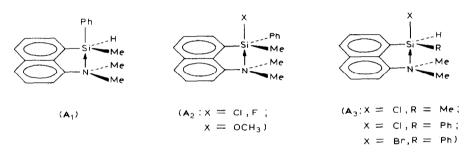
Examination of an organosilicon compound with a structure very favorable for pentacoordination shows the generality of the pseudorotation at silicon for bi- and tri-functional compounds. In contrast monofunctional compounds do not undergo pseudorotation, the ΔG^* being estimated to be > 20 kcal M^{-1} .

Pseudorotation in the siliconate species [1] has been suggested to be the most reasonable mechanism for accounting for the enantiomerization involving intramolecular ligand exchange. Recently pseudorotation in pentacoordinated organosilicon structures 1 and 2 has been observed [2, 3].



(2)

A clear distinction between pseudorotation and ring opening-and-closing processes has been obtained for species 1 and the corresponding energies were determined [3, 4]. However the measurement of ΔG^* for the pseudorotation was prevented by the relatively low N—Si breaking energy.


0022-328X/86/\$03.50 © 1986 Elsevier Sequoia S.A., Lausanne

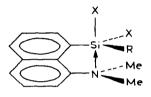
This paper describes the results obtained with the rigid structure A [5], which is known to be very favorable for extra-coordination $N \rightarrow Si$ [6] and which permits the study of mono-, bi- and tri-functional silicon compounds.

Monofunctional and heterobifunctional silanes

The room temperature ¹H NMR spectra of monofunctional silanes A_1 and A_2 and heterobifunctional silanes A_3 always show 2 nonequivalent methyls of NME₂ groups (see Table 1). This is consistent with a TBP geometry with electronegative groups in apical position, the Si-H and Si-C bonds occupying equatorial positions [6, 1, 7].

TABLE 1

¹H NMR CHEMICAL SHIFTS OF COMPOUNDS A


(Shifts measured on a VARIAN HA 100 in dichlorobenzine	e, are reported relative to internal TMS.)
--	--

Monofunctional silanes A ₁ and A ₂ —SiR'R ² X	$\delta((CH_3)_2N)$ (ppm)	ΔG^{\bigstar} (kcal M^{-1})	
	20°C (2 signals)	$+130^{\circ} < T < +200^{\circ}C$	
SiPhMeH	2.44, 2.14	2.30 (s)	22
-SiPhMeX, X = Cl	2.32, 1.48	1.96 (s)	20
SiPhMeX, X = F	2.13, 1.46	2.02 (s)	23
-SiPhMe(OMe)	2.15, 1.46	2.08 (s)	22
Heterobifunctional silanes A ₃ —SiRHX	δ ((CH ₃) ₂ N) (ppm)		ΔG^{\bigstar} (kcal M^{-1})
	20°C (2 signals)	$+150^{\circ} < T < +200^{\circ}C$	
-SiPhHX, $X = Cl$	2.40, 1.90	feguivalence	>22
-SiPhHX, X = Br	1.66, 2.00	Inot obtained	>21
SiMeHCl	2.56, 2.26	2.32	22

Equivalence is observed above 130° C and all the ΔG^{\star} values are > 20 kcal M^{-1} . These energies reflect high tendency towards pentacoordination in A, and we assume they correspond to the N \rightarrow Si bond-breaking energy. It follows that the pseudorotation energy must have higher values.

Homo bifunctional silanes

In contrast, the ¹H NMR spectra of bifunctional silanes A_4 at room temperature (see Table 2), always show equivalence of the Me groups attached to N.

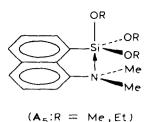
 $(A_4: X = F, CI, R = Ph;$ $X = OCH_3, R = Ph;$ X = CI, R = Me)

Diastereotopy is observed at low temperatures in the range $9 < \Delta G^* < 12$ kcal M^{-1} , showing the presence of dissymmetric trigonal bipyramidal structures.

TABLE 2

¹H NMR CHEMICAL SHIFTS OF HOMO BIFUNCTIONAL SILANES A₄

	$\delta((CH_3)_2N)$ (ppm)		ΔG^{\bigstar} (kcal M^{-1})	
	20°C	$T < 0^{\circ} C$ (2 signals)		
$-SiPhX_2, X = Cl$	2.10 (s)	2.66, 1.64	11	
$-SiPhX_{2}, X = F$	2.22 (s)	2.58, 1.85	12	
-SiPh(OCH ₃) ₂	2.02 (s)	2.42, 1.54	9^a	
-SiMeCl,	2.72 (s)	2.96, 2.54	9	

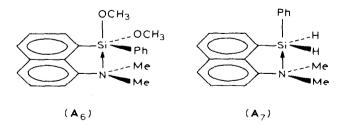

(Chemical shifts were measured on a VARIAN HA 100 in CD₂Cl₂, relative to internal TMS.)

^aThe value of ΔG^{\pm} calculated from $(OCH_3)_2$ is also 9 kcal mol⁻¹.

Furthermore the very high activation energy difference between the two types of compounds having the same rigid geometry indicates clearly that we are obtaining energies for two processes. Values $\Delta G^* > 20$ kcal M^{-1} probably refer to the opening-closing process and reflect the difficulty of breaking the $N \rightarrow Si$ bond. The low ΔG^* values obtained for bifunctional structures containing a more electrophilic silicon correspond to the pseudorotation energy.

Trifunctional silanes

The case of trialkoxysilanes A_5 is interesting since it is not possible to distinguish the chemical shifts of potentially non equivalent Me or Et groups. See Table 3.


TABLE 3 ¹H AND ¹⁹F NMR CHEMICAL SHIFTS (in ppm) OF TRIFUNCTIONAL COMPOUNDS:

(Chemical shifts were measured on a VARIAN 390, in CD_2Cl_2 with TMS (¹H) and $CFCl_3$ (¹⁹F) as internal references.)

SiX ₃		-20°C	$-100^{\circ}C < T < 0^{\circ}C$	ΔG^{\star} (kcal M^{-1})
SiF ₃	δ(F)	141.1	$\begin{cases} -130.9 \ F_{ax}(t) \\ -143.0 \ F_{eq}(d) \end{cases}$	12
-Si(OMe)3	$\delta(OCH_3)_3$	3.53 (s)	3.52 (s)	<7
-Si(OEt)3	$\delta(OCH_2CH_3)$	1.16 (s)	1.17 (s)	<7
-Si(OEt) ₃	$\delta(OCH_2CH_3)$	3.82 (s)	3.80 (s)	

The ¹H NMR spectrum remains unchanged down to -100° C. As in the case of trihydrogenosilanes [4] this equivalence can be attributed to rapid pseudorotation at silicon ($\Delta G_{\psi}^{\star} < 7 \text{ kcal } M^{-1}$). The data for the trifluorosilane compound are shown in Table 3 and reveal a triplet for F_{ax} (δ -130.9 ppm) and a doublet for F_{eq} (δ -143 ppm) in the low temperature ¹⁹F spectrum. The activation energy for the fluorine equivalence process is 12 kcal M^{-1} . This value is close to the value of ΔG_{ψ}^{\star} viz. 13.1 kcal M^{-1} found for the trifluorosilane of structure 1 [3, 9].

Finally the ¹H NMR results obtained for the dimethoxysilane A_6 are consistent with a dissymmetric trigonal bipyramidal structure, and recent crystallographic information for the silicon dihydride A_7 [6] enables us to derive the relative order of apicophilicity of groups attached at silicon as $H < C_{sp^2} < OCH_3$. The presence of Si-H bonds favours pentacoordination [4], but the hydrogen is not apicophilic and prefers the equatorial position. These results extend the scale previously established [8].

These results for the (8-dimethylaminonaphthyl)silanes lead to the following conclusions:

(1) Pseudorotation at silicon takes place with trifunctional silanes. For the trialkoxysilanes studied, as for the previously studied trihydrogenosilanes [4], this process has a low energy barrier ($\Delta G^* < 7 \operatorname{kcal} M^{-1}$). The value of ΔG^* obtained for the trifluorosilane is similar to those previously observed for compounds with structure 1 [3].

(2) The homobifunctional silanes A_4 (Si-F₂, Si-Cl₂, Si(OR)₂) undergo also pseudorotation $9 < \Delta G^* < 12$ kcal M^{-1} , as does the silicon difluoride of with structure 1.

(3) The pseudorotation of monofunctional silanes requires a very high energy: $\Delta G^* > 20 \text{ kcal } M^{-1}$. The coalescence of the NMe₂ group found in this energy range can be attributed to N \rightarrow Si bond breaking. This is confirmed by the results obtained for hetero bifunctional compounds A₃: the very high affinity of a Si—H bond for the equatorial position increases the stability of the trigonal bipyramidal complex and the coalescence cannot be observed ($\Delta G^* > 22 \text{ kcal } M^{-1}$).

References

- 1 W.B. Farnham and R.L. Harlow, J. Am. Chem. Soc., 103 (1981) 4608.
- 2 W.H. Stevenson III, S. Wilson, J.C. Martin and W.B. Farnham, J. Am. Chem. Soc., 107 (1985) 6340; W.H. Stevenson III and J.C. Martin, ibid., 107 (1985) 6352.
- 3 R.J.P. Corriu, A. Kpoton, M. Poirier and G. Royo, J. Organomet. Chem. 277 (1984) C25.
- 4 J. Boyer, R.J.P. Corriu, A. Kpoton, M. Mazhar, M. Poirier and G. Royo, J. Organomet. Chem., 301 (1986) 131.
- 5 J.T.B.H. Jastrzebski, C.T. Knaap and G. Van Koten, J. Organomet. Chem., 255 (1983) 287.
- C. Brelière, F. Carré, R.J.P. Corriu, M. Poirier and G. Royo, Organometallics, 5 (1986) 388.
 R. Corriu, C. Guérin and J. Moreau, Topics in Stereochemistry, Wiley-Interscience, New York, vol. 15, 1984, p. 43.
- 8 R.J.P. Corriu, M. Poirier and G. Royo, J. Organomet. Chem., 233 (1982) 165.
- 9 C. Brelière, F. Carré, R.J.P. Corriu, A. De Saxcé, M. Poirier and G. Royo, J. Organomet. Chem., 205 (1981) C1.