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Summary 

Examination of an organosilicon compound with a structure very favorable 
for pentacoordination shows the generality of the pseudorotation at silicon for 
bi- and tri-functional compounds. In contrast monofunctional compounds do 
not undergo pseudorotation, the AG* being estimated to be > 20 kcal M-‘. 

Pseudorotation in the siliconate species [l] has been suggested to be the 
most reasonable mechanism for accounting for the enantiomerization involving 
intramolecular ligand exchange. Recently pseudorotation in pentacoordinated 
organosilicon structures 1 and 2 has been observed [2, 31. 

(1) 
CF3 CF3 

(2) 
A clear distinction between pseudorotation and ring opening-and-closing 

processes has been obtained for species 1 and the corresponding energies were 
determined [3,4]. However the measurement of AG* for the pseudorotation 
was prevented by the relatively low N-Si breaking energy. 
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This paper describes the results obtained with the rigid structure A [ 53, 
which is known to be very favorable for extra-coordination N + Si [6] and 
which permits the study of mono-, bi- and tri-functional silicon compounds. 

(A) 

Monofunctional and heterobifunctional silanes 
The room temperature ‘H NMR spectra of monofunctional silanes Al and 

A, and heterobifunctional silanes A3 always show 2 nonequivalent methyls of 
NMEz groups (see Table 1). This is consistent with a TBP geometry with electro- 
negative groups in apical position, the Si-H and Si-Cf bonds occupying equa- 
torial positions [6, 1, 71. 

(A,1 (A,:X = CI,F ; 

X = OCH3) 

(A3:X = Cl , R = Me; 

X= CI,R= Ph; 

x = Br,R = Ph) 

TABLE 1 

‘H NMR CHEMICAL SHIFTS OF COMPOUNDS A 

(Shifts measured on a VARIAN HA 100 in dichlorobenzine. are reported relative to internal TMS.) 

Monofunctional 

silanes A, and A, 

-SiR’R’X 6 (WH,),N) (PP~) AC* (kcal M-‘) 

20°C (2 signals) +130° < T < + 200% 

-SiPhMeH 2.44, 2.14 2.30 (s) 22 

-SiPhMeX. X = Cl 2.32, 1.48 1.96 (s) 20 

-SiPhMeX, X = F 2.13, 1.46 2.02 (s) 23 

-SiPhMe(OMe) 2.15, 1.46 2.08 (6) 22 

Heterobifunetional 

silanes A, 

-SiRHX 6 ((CH, ),N) (PP~) AG* (kcal M-l) 

2O’C (2 signals) +150° < T < + 2OO’C 

--SiPhHX, X = Cl 2.40,1.90 

-SiPhHX, X = Br 1.66. 2.00 

--SiMeHCI 2.56, 2.26 

equivalence 

I not obtained 

2.32 

>22 

>21 

22 
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Equivalence is observed above 130°C and all the AG* values are > 20 
kcal M-l. These energies reflect high tendency towards pentacoordination in 
A, and we assume they correspond to the N -+ Si bond-breaking energy. It fol- 
lows that the pseudorotation energy must have higher values. 

Homo bifunctional silanes 
In contrast, the ‘H NMR spectra of bifunctional silanes A4 at room tempera- 

ture (see Table 2), always show equivalence of the Me groups attached to N. 

(A,: X = F,CI ,R = Ph; 

X = 0CH3,R = Ph; 

X = Cl , R = Me) 

Diastereotopy is observed at low temperatures in the range 9 < AG* < 12 
kcal M-‘, showing the presence of dissymmetric trigonal bipyramidal structures. 

TABLE 2 

‘H NMR CHEMICAL SHIFTS OF HOMO BIFUNCTIONAL SILANES A, 

(Chemical shifts were measured on a VARIAN HA 100 in CD&l,, relative to internal TMS.) 

S WH,),N) (PP~) AG* (kcal M-l) 

2o”c T < O’C (2 signals) 

-SiPhX1, X = Cl 2.10 (s) 2.66.1.64 11 
-SiPhX;, X = F 2.22 (s) 2.58.1.85 12 
-SiPh(OCH,), 2.02 (s) 2.42,1.54 Ba 
-SiMeCl, 2.72 (s) 2.96, 2.54 9 

“The value of AG* calculated f?om (OCH,), is also 9 kcal mol-‘. 

Furthermore the very high activation energy difference between the two 
types of compounds having the same rigid geometry indicates clearly that we 
are obtaining energies for two processes. Values AG* > 20 kcal M-’ probably 
refer to the opening-closing process and reflect the difficulty of breaking the 
N + Si bond. The low AG* values obtained for bifunctional structures contain- 
ing a more electrophilic silicon correspond to the pseudorotation energy. 

Trifunctional &lanes 
The case of trialkoxysilanes A5 is interesting since it is not possible to distin- 

guish the chemical shift8 of potentially non equivalent Me or Et groups. See 
Table 3. 



(A,:R = Me,Etl 

TABLE 3 

‘H AND “F NMR CHEMICAL SHIFTS (in ppm) OF TRIFUNCTIONAL COMPOUNDS: 

(Chemical shifts were measured on a VARIAN 390, in CD&l, with TMS (‘H) and CFCl, (“F) as internal 
references.) 

-SiF, 

2 -20°c -lOO°C < T < O'C AG* (kcal M-l) 

6 (F) -141.1 
12 

-Si(OMe), 6 (OCH,), 3.53 (s) 3.52 (s) <7 
-Si(OEt), G(OCH,CHI) 1.16 (s) 1.17 (s) 
-Si(OEt), S(OCH,CH,) 3.82 (s) 3.80 (s) 

<7 

The ‘H NMR spectrum remains unchanged down to -100°C. As in the case 
of trihydrogenosilanes [ 41 this equivalence can be attributed to rapid pseudo- 
rotation at silicon (A G$ < 7 kcal M-l). The data for the trifluorosilane com- 
pound are shown in Table 3 and reveal a triplet for F, (6 -130.9 ppm) and a 
doublet for F,, (6 -143 ppm) in the low temperature 19F spectrum. The activa- 
tion energy for the fluorine equivalence process is 12 kcal M-‘. This value is 
close to the value of AGG viz. 13.1 kcal M-’ found for the trifluorosilane of 
structure 1 [3, 91. 

Finally the ‘H NMR results obtained for the dimethoxysilane A6 are consis- 
tent with a dissymmetric trigonal bipyramidal structure, and recent crystallo- 
graphic information for the silicon dihydride A, [6] enables us to derive the 
relative order of apicophilicity of groups attached at silicon as H < C,z < 
0CH3. The presence of Si-H bonds favours pentacoordination [ 41, but the hy- 
drogen is not apicophilic and prefers the equatorial position. These results 
extend the scale previously established [ 81. 

0CH3 
I 

Ph 
I 

1 __-- 
-Si - 

t 
-N< 

OCH3 

‘Ph 

Me 

Me 

1 -H ^. e-- 

(A,) (A,) 
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These results for the (8dimethylaminonaphthyl)silanes lead to the following 
conclusions: 

(1) Pseudorotation at silicon takes place with trifunctional silanes. For the 
trialkoxysilanes studied, as for the previously studied trihydrogenosilanes [ 41, 
this process has a low energy barrier (AG* < 7 kcal M-l). The value of AG* 
obtained for the trifluorosilane is similar to those previously observed for 
compounds with structure 1 [ 31. 

(2) The homobifunctional silanes A4 ( Si-F2, Si-C&, Si(OR)?) undergo 
also pseudorotation 9 < A G* < 12 kcal M-‘, as does the silicon difluoride of 
with structure 1. 

(3) The pseudorotation of monofunctional silanes requires a very high 
energy: A G* > 20 kcal M-‘. The coalescence of the NMe, group found in this 
energy range can be attributed to N + Si bond breaking. This is confirmed by 
the results obtained for hetero bifunctional compounds As: the very high 
affinity of a Si-H bond for the equatorial position increases the stability of 
the trigonal bipyramidal complex and the coalescence cannot be observed 
(AG* > 22 kcalM-l). 
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